3.418 \(\int \frac{x^2 \left (a+b x^2\right )^p}{(d+e x)^2} \, dx\)

Optimal. Leaf size=281 \[ -\frac{2 x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (a e^2+b d^2 (p+1)\right ) F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{e^2 \left (a e^2+b d^2\right )}+\frac{x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (a e^2+2 b d^2 (p+1)\right ) \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )}{e^2 \left (a e^2+b d^2\right )}+\frac{d \left (a+b x^2\right )^{p+1} \left (a e^2+b d^2 (p+1)\right ) \, _2F_1\left (1,p+1;p+2;\frac{e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{e (p+1) \left (a e^2+b d^2\right )^2}-\frac{d^2 \left (a+b x^2\right )^{p+1}}{e (d+e x) \left (a e^2+b d^2\right )} \]

[Out]

-((d^2*(a + b*x^2)^(1 + p))/(e*(b*d^2 + a*e^2)*(d + e*x))) - (2*(a*e^2 + b*d^2*(
1 + p))*x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/
(e^2*(b*d^2 + a*e^2)*(1 + (b*x^2)/a)^p) + ((a*e^2 + 2*b*d^2*(1 + p))*x*(a + b*x^
2)^p*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/(e^2*(b*d^2 + a*e^2)*(1 + (b
*x^2)/a)^p) + (d*(a*e^2 + b*d^2*(1 + p))*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1
, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(e*(b*d^2 + a*e^2)^2*(1 + p)
)

_______________________________________________________________________________________

Rubi [A]  time = 0.655827, antiderivative size = 277, normalized size of antiderivative = 0.99, number of steps used = 10, number of rules used = 9, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.45 \[ -\frac{2 x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (a e^2+b d^2 (p+1)\right ) F_1\left (\frac{1}{2};-p,1;\frac{3}{2};-\frac{b x^2}{a},\frac{e^2 x^2}{d^2}\right )}{e^2 \left (a e^2+b d^2\right )}+\frac{x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (a+\frac{2 b d^2 (p+1)}{e^2}\right ) \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )}{a e^2+b d^2}+\frac{d \left (a+b x^2\right )^{p+1} \left (a e^2+b d^2 (p+1)\right ) \, _2F_1\left (1,p+1;p+2;\frac{e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{e (p+1) \left (a e^2+b d^2\right )^2}-\frac{d^2 \left (a+b x^2\right )^{p+1}}{e (d+e x) \left (a e^2+b d^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[(x^2*(a + b*x^2)^p)/(d + e*x)^2,x]

[Out]

-((d^2*(a + b*x^2)^(1 + p))/(e*(b*d^2 + a*e^2)*(d + e*x))) - (2*(a*e^2 + b*d^2*(
1 + p))*x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d^2])/
(e^2*(b*d^2 + a*e^2)*(1 + (b*x^2)/a)^p) + ((a + (2*b*d^2*(1 + p))/e^2)*x*(a + b*
x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/((b*d^2 + a*e^2)*(1 + (b*x
^2)/a)^p) + (d*(a*e^2 + b*d^2*(1 + p))*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1,
1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(e*(b*d^2 + a*e^2)^2*(1 + p))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 59.0981, size = 309, normalized size = 1.1 \[ - \frac{d^{2} \left (\frac{e \left (\sqrt{b} x + \sqrt{- a}\right )}{\sqrt{b} \left (d + e x\right )}\right )^{- p} \left (- \frac{e \left (- \sqrt{b} x + \sqrt{- a}\right )}{\sqrt{b} \left (d + e x\right )}\right )^{- p} \left (a + b x^{2}\right )^{p} \left (\frac{1}{d + e x}\right )^{2 p} \left (\frac{1}{d + e x}\right )^{- 2 p + 1} \operatorname{appellf_{1}}{\left (- 2 p + 1,- p,- p,- 2 p + 2,\frac{d - \frac{e \sqrt{- a}}{\sqrt{b}}}{d + e x},\frac{d + \frac{e \sqrt{- a}}{\sqrt{b}}}{d + e x} \right )}}{e^{3} \left (- 2 p + 1\right )} - \frac{d \left (\frac{e \left (\sqrt{b} x + \sqrt{- a}\right )}{\sqrt{b} \left (d + e x\right )}\right )^{- p} \left (- \frac{e \left (- \sqrt{b} x + \sqrt{- a}\right )}{\sqrt{b} \left (d + e x\right )}\right )^{- p} \left (a + b x^{2}\right )^{p} \operatorname{appellf_{1}}{\left (- 2 p,- p,- p,- 2 p + 1,\frac{d - \frac{e \sqrt{- a}}{\sqrt{b}}}{d + e x},\frac{d + \frac{e \sqrt{- a}}{\sqrt{b}}}{d + e x} \right )}}{e^{3} p} + \frac{x \left (1 + \frac{b x^{2}}{a}\right )^{- p} \left (a + b x^{2}\right )^{p}{{}_{2}F_{1}\left (\begin{matrix} - p, \frac{1}{2} \\ \frac{3}{2} \end{matrix}\middle |{- \frac{b x^{2}}{a}} \right )}}{e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2*(b*x**2+a)**p/(e*x+d)**2,x)

[Out]

-d**2*(e*(sqrt(b)*x + sqrt(-a))/(sqrt(b)*(d + e*x)))**(-p)*(-e*(-sqrt(b)*x + sqr
t(-a))/(sqrt(b)*(d + e*x)))**(-p)*(a + b*x**2)**p*(1/(d + e*x))**(2*p)*(1/(d + e
*x))**(-2*p + 1)*appellf1(-2*p + 1, -p, -p, -2*p + 2, (d - e*sqrt(-a)/sqrt(b))/(
d + e*x), (d + e*sqrt(-a)/sqrt(b))/(d + e*x))/(e**3*(-2*p + 1)) - d*(e*(sqrt(b)*
x + sqrt(-a))/(sqrt(b)*(d + e*x)))**(-p)*(-e*(-sqrt(b)*x + sqrt(-a))/(sqrt(b)*(d
 + e*x)))**(-p)*(a + b*x**2)**p*appellf1(-2*p, -p, -p, -2*p + 1, (d - e*sqrt(-a)
/sqrt(b))/(d + e*x), (d + e*sqrt(-a)/sqrt(b))/(d + e*x))/(e**3*p) + x*(1 + b*x**
2/a)**(-p)*(a + b*x**2)**p*hyper((-p, 1/2), (3/2,), -b*x**2/a)/e**2

_______________________________________________________________________________________

Mathematica [A]  time = 0.541552, size = 300, normalized size = 1.07 \[ \frac{\left (a+b x^2\right )^p \left (\frac{d^2 \left (\frac{e \left (x-\sqrt{-\frac{a}{b}}\right )}{d+e x}\right )^{-p} \left (\frac{e \left (\sqrt{-\frac{a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (1-2 p;-p,-p;2-2 p;\frac{d-\sqrt{-\frac{a}{b}} e}{d+e x},\frac{d+\sqrt{-\frac{a}{b}} e}{d+e x}\right )}{(2 p-1) (d+e x)}-\frac{d \left (\frac{e \left (x-\sqrt{-\frac{a}{b}}\right )}{d+e x}\right )^{-p} \left (\frac{e \left (\sqrt{-\frac{a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac{d-\sqrt{-\frac{a}{b}} e}{d+e x},\frac{d+\sqrt{-\frac{a}{b}} e}{d+e x}\right )}{p}+e x \left (\frac{b x^2}{a}+1\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};-\frac{b x^2}{a}\right )\right )}{e^3} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(x^2*(a + b*x^2)^p)/(d + e*x)^2,x]

[Out]

((a + b*x^2)^p*((d^2*AppellF1[1 - 2*p, -p, -p, 2 - 2*p, (d - Sqrt[-(a/b)]*e)/(d
+ e*x), (d + Sqrt[-(a/b)]*e)/(d + e*x)])/((-1 + 2*p)*((e*(-Sqrt[-(a/b)] + x))/(d
 + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p*(d + e*x)) - (d*AppellF1[-2*p, -
p, -p, 1 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/(d + e*x)])
/(p*((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p)
+ (e*x*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/(1 + (b*x^2)/a)^p))/e^3

_______________________________________________________________________________________

Maple [F]  time = 0.086, size = 0, normalized size = 0. \[ \int{\frac{{x}^{2} \left ( b{x}^{2}+a \right ) ^{p}}{ \left ( ex+d \right ) ^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2*(b*x^2+a)^p/(e*x+d)^2,x)

[Out]

int(x^2*(b*x^2+a)^p/(e*x+d)^2,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{2} + a\right )}^{p} x^{2}}{{\left (e x + d\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p*x^2/(e*x + d)^2,x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p*x^2/(e*x + d)^2, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{p} x^{2}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p*x^2/(e*x + d)^2,x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p*x^2/(e^2*x^2 + 2*d*e*x + d^2), x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2*(b*x**2+a)**p/(e*x+d)**2,x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x^{2} + a\right )}^{p} x^{2}}{{\left (e x + d\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x^2 + a)^p*x^2/(e*x + d)^2,x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p*x^2/(e*x + d)^2, x)